Program Studi Kimia - Fakultas MIPA - Universitas Islam Indonesia - Konsentrasi Analisis Industri dan Lingkungan - Konsentrasi Kewirausahaan Kimia - Konsentrasi Minyak Atsiri

You are here: HOME arrow ARTIKEL arrow Kimia Tepat Guna
  • Decrease font size
  • Default font size
  • Increase font size
Prediksi kegunaan baru dari obat lama berdasarkan efek samping mereka Print E-mail
Tuesday, 09 June 2009
Kata Kunci: computational biochemistry, efek samping obat
Image
Pada tanggal 11 Juli 2008, Peneliti dari Laboratorium Biologi Molekuler Eropa (EMBL) melaporkan, bahwa mereka telah menemukan cara baru untuk menggunakan efek samping obat yang tidak diinginkan. Mereka mengembangkan teknik komputasi yang membandingkan seberapa mirip efek samping dari berbagai macam obat, dan memprediksi seberapa mirip aksi obat tersebut dalam mentargetkan molekul yang sama. Kajian ini, yang telah dipublikasikan pada jurnal Science, menunjukkan penggunaan baru dari obat yang ada di pasaran.
Obat yang serupa, sering kali memiliki target protein yang serupa juga. Mereka juga memiliki modus aksi dan efek samping buruk yang mirip. Jika dilihat dari perspektif lain, ini berarti bahwa obat yang memiliki efek samping serupa bisa jadi mentargetkan molekul yang sama. Tim peneliti EMBL telah mengembangkan alat komputasi yang membandingkan efek samping tersebut, untuk menguji apakah mereka dapat memprediksi target umum dari obat.
” Korelasi seperti itu tidak hanya membongkar basis molekuler dari berbagai efek samping, namun juga memberi harapan pada potensi terapi yang menjanjikan. Ia menunjukkan penggunaan baru dari obat di pasaran pada penyakit-penyakit yang bukan dikembangkan untuk obat tersebut,” kata Peer Bork, kordinator gabungan dari unit Biologi struktur dan komputasi EMBL.
Pendekatan ini akan terbukti berguna untuk obat yang secara kimia berbeda, yang digunakan untuk berbagai area terapetik.
Namun profil protein target mereka saling tumpang tindih dan tidak diketahui secara pasti. Strategi serupa telah terbukti sukses di masa lalu. Sebagai contoh, obat yang dipasarkan sebagai Viagra pada awalnya digunakan untuk menangani Angina. Namun efek samping pada seksualitas telah mengubah area terapetiknya.
Dengan mengaplikasikan metode baru tersebut pada 746 obat di pasaran, peneliti telah menemukan 261 obat yang berbeda, yang mekanismenya sudah diketahui, namun mengikat pada target molekuler yang tidak diinginkan. 20 dari obat ini kemudian diuji secara eksperimen, dan 13 dari mereka menunjukkan pengikatan pada target yang diprediksi memiliki efek samping serupa. Dengan menguji 9 dari mereka lebih jauh di esei sel, mereka semua menunjukkan aktivitas dan efek yang diinginkan pada sel, dengan interaksi pada target protein yang baru ditemukan.
Hasil tersebut mengungkapkan, bahwa efek samping dapat membantu untuk menemukan interaksi obat-target yang baru dan relevan, yang bisa dikembangkan untuk terapi baru. Obat penguat otak Donepezil, sebagai contoh, memiliki target yang serupa dengan obat anti depresi, Venlafaxine. Ini membuktikan bahwa ada kemungkinan Donepezil dapat digunakan untuk mengatasi depresi.
Keunggulan utama dari obat yang ada dipasaran, adalah mereka telah diuji secara klinis dan terbukti aman pada pasien. Ini berarti, bahwa peneliti dapat segera terapi yang baru jauh lebih cepat, tanpa harus menunggu sampai 15 tahun untuk diaplikasikan pada pasien.
“Dengan beberapa pengujian dan pengembangan, metode kami dapat diaplikasikan pada skala lebih besar di masa depan. Obat baru dapat dicek secara rutin pada komputer untuk target tersembunyi tambahan, dan penggunaan potensial di berbagai area terapetik. Ini akan menghemat banyak uang, dan akan mempercepat pengembangan obat secara signifikan.”  Demikian kesimpulan Bork.

Ditulis oleh Arli Aditya Parikesit pada 06-06-2009
Diterjemahkan dari:
European Molecular Biology Laboratory (2008, July 11). Scientist Predict New Uses For Existing Drugs From Their Side Effects. Science Daily. Retreived April 30, 2009. From http://www.sciencedaily.com/releases/2008/07/089710142920.htm
yang-berbahaya-bagi-kesehatan/
http://www.chem-is-try.org/artikel_kimia/biokimia/prediksi-kegunaan-baru-dari-obat-lama-berdasarkan-efek-samping-mereka/
Last Updated ( Tuesday, 09 June 2009 )
Read more...
 
Pemanfaatan Woodchips dan Bahan Non Sumber Makanan Menjadi Bahan Bakar Hidrogen Print E-mail
Thursday, 28 May 2009

Kata Kunci: Bahan Bakar Hidrogen, Bahan Non Sumber Makanan, Pemanfaatan Woodchips

ImageSudah tahukah anda, bahwa sel bahan bakar kendaraan yang kita gunakan untuk kebutuhan sehari-hari teryata dapat dihasilkan juga oleh enzim yang mengkonsumsi selulosa dari rumput atau woodchips (potongan kayu kecil) dan hembusan hidrogen. Peneliti di Virginia Tech, Oak Ridge National Laboratory (ORNL), dan University of Georgia telah menghasilkan gas hidrogen murni dengan daya yang cukup baik untuk sebuah sel bahan bakar dengan melakukan proses pencampuran 14 enzymes, yaitu antara lain:  satu coenzyme, cellulosic dari bahan bukan makanan, dan  air dengan temperature sekitar (32 derajat Celcius).
Dan hasilnya Grup penelitian ini mengumumkan tiga kemajuan dari “satu panci” proses: 1) sebuah novel kombinasi enzim,  2) meningkatkan laju generasi hidrogen - untuk secepat proses fermentasi hidrogen, dan 3) dan dimana kimia energi output lebih besar dari energi kimia disimpan dalam gula -  hidrogen tertinggi hasil laporan adalah dari material cellulosic. “Selain konversi energi kimia dari gula, proses juga mengubah suhu rendah menjadi energi panas berkualitas tinggi energi hidrogen - seperti Prometheus mencuri api,” kata Percival Zhang, asisten profesor dari biologi sistem rekayasa di College Pertanian dan Life Sciences di Virginia Tech.

“Hal ini menarik karena menggunakan selulosa pati yang dapat diperbaharui memperluas sumber daya yang ada untuk memproduksi hidrogen disertakan sebagai biomas,” kata Jonathan Mielenz, pemimpin dari Bioconversion Sains dan Teknologi di ORNL Group.
Para peneliti menggunakan cellulosic terisolasi dari bahan kayu chips, potongan rumput bekas dapat juga digunakan. “Jika pecahan kecil tersebut, 2 atau 3% dari biomas tahunan yang digunakan untuk produksi gula ke sel bahan bakar hidrogen digunakan untuk transportasi, maka kita bisa mencapai kebebasan transportasi untuk bahan bakar,” ujar Zhang. (Dia menambahkan bahwa 3 persen adalah angka global untuk kebutuhan transportasi. AS akan benar-benar perlu mengkonversi sekitar 10 persen dari biomassanya - yang akan menjadi 1,3 miliar ton biomassa yang akan bermanfaat).
Penelitian ini didukung oleh Air Force Office of Scientific Research; Zhang dari DuPont Profesor Young Award, dan Departemen Energi AS.
Sumber :  http://www.ccnmag.com/article/hydrogen_fuel_from_woodchips_and_other_non-food_sources
Di : http://www.chem-is-try.org/artikel_kimia/teknologi_tepat_guna/pemanfaatan-woodchips-dan-bahan-non-sumber-makanan-menjadi-bahan-bakar-hidrogen/

Read more...
 
Sel Bahan Bakar, Solusi Energi Masa Depan Print E-mail
Tuesday, 19 May 2009
Kata Kunci: Christian Friedrich Schönbein, sel bahan bakar

ImageSejak ditemukan oleh ilmuwan berkebangsaan Jerman, Christian Friedrich Schönbein pada tahun 1838, sel bahan bakar telah berkembang dan menjadi salah satu sumber energi alternatif. Para ahli kimia dari General Electric mengembangkan sel bahan bakar sebagai pembangkit listrik yang dimulai pada tahun 1955. Pada tahun 1958, sel bahan bakar untuk pembangkit listrik secara komersial dikembangkan pertama kalinya. Pengembangan terus berlanjut hingga pada tahun 2009 ini diprediksikan akan dapat menghasilkan keluaran listrik hingga 400 KW.
Sel bahan bakar adalah alat yang menghasilkan energi listrik secara elektrokimia. Seperti halnya sel elektrokimia, sel bahan bakar memiliki anoda dan katoda. Pada anoda terdapat bahan bakar gas hidrogen. Sedangkan pada katoda terdapat gas oksigen yang digunakan sebagai oksidator. Hidrogen yang berasal dari anoda diubah menjadi ion hidrogen dan elektron. Pada katoda, oksigen direduksi dengan adanya elektron. Perbedaan potensial yang terjadi pada anoda dan katoda inilah yang  menghasilkan arus listrik.
Sel bahan bakar telah menjadi salah satu fokus penelitian di negara- negara industri dengan kelebihan-kelebihan yang dimiliki. Dengan meningkatnya isu pemanasan global oleh gas rumah kaca, sel bahan bakar menawarkan energi ramah lingkungan yang tidak mengemisi gas CO2 sebagai penyumbang utama efek rumah kaca. Efesiensi sel bahan bakar secara teoritis dapat mencapai 100% adalah salah satu kelebihan yang tidak dapat dimiliki oleh pembangkit listrik dengan bahan bakar gas, minyak bumi dan batu bara yang menggunakan prinsip mesin Carnot. Dan yang paling terpenting adalah sumber bahan bakar yang melimpah, yaitu hidrogen. Dengan luas lautan mencapai dua pertiga permukaan bumi, air adalah salah satu sumber hidrogen yang tak terbatas.
Image 
Superioritas dari sel bahan bakar juga harus dibayar mahal dengan perlunya penelitian intensif guna mencapai pembangkit listrik yang murah, ramah lingkungan dan dapat diperbaharui. Pada tahun 2005, Amerika Serikat menganggarkan US$3,7 milliar untuk riset dan pengembangan sel bahan bakar dan hidrogen. Sel bahan bakar ini memerlukan material elektrokatalis sebagai anoda dan katoda yang dapat mengkatalisa reaksi oksidasi hidrogen dan reduksi oksigen. Saat ini, elektrokatalis yang superior adalah platina, logam yang sangat mahal dan langka jumlahnya sehingga banyak penelitian ditujukan untuk mencari material lain selain logam platina. Sumber hidrogen yang berasal dari air juga merupakan masalah yang saat ini dihadapi. Mahalnya proses elektrokatalisa air untuk mendapatkan hidrogen juga merupakan kendala pemasaran sel bahan bakar saat ini, sehingga belum dapat bersaing dengan bahan bakar minyak bumi.
Berkurangnya sumber daya minyak bumi dan tuntutan untuk mengurangi gas rumah kaca menjadikan sel bahan bakar ini suatu solusi guna mencegah krisis energi dan lingkungan. Dengan berkembangnya hasil penelitian, harga energi sel bahan bakar ini akan bisa ditekan dan akan menjadi salah satu sumber energi alternatif utama dimasa yang akan datang.

Ditulis oleh Zaenal Awaludin pada 18-05-2009
Read more...
 
Teknik Komputasi baru dapat memprediksi efek samping obat Print E-mail
Wednesday, 13 May 2009
Kata Kunci: bioinformatika, efek samping obat, Protein Data Bank, struktur tiga dimensi protein, terapetik
Imagekomputer-farmasiPada 13 Desember 2007, dilaporkan bahwa identifikasi awal dari efek samping buruk obat sebelum diuji pada manusia adalah sangat penting dalam mengembangkan terapi baru, karena efek samping yang tidak diharapkan menyebabkan sepertiga dari kegagalan proses pengembangan obat. Sekarang, peneliti pada Universitas California, San Diego (UCSD) telah mengembangkan teknik baru dengan menggunakan modeling komputer untuk mengidentifikasi efek samping potensial dari obat, dan telah menggunakan teknik itu untuk mempelajari kelas obat tertentu, yang termasuk didalamnya adalah tamoxifen, obat yang sering diresepkan pada perawatan kanker payudara. Kajian mereka tersedia di jurnal Plos Komputasi Biologi.
Metode uji konvensional menapiskan senyawa pada studi binatang, sebelum uji pada manusia, dengan harapan dapat menemukan efek samping dari terapetik yang menjanjikan. Tim UCSD, yang dipimpin oleh Philip Bourne, Profesor Farmakologi pada Sekolah Farmasi dan ilmu farmasetika UCSD dan Lei Xie PhD dari Pusat Komputer Super San Diego UCSD, mereka menggunakan tenaga dari model komputer untuk menapiskan molekul obat tertentu menggunakan database yang tersedia untuk seluruh dunia. Database tersebut adalah Protein Data Bank (PDB), yang didalamnya terdapat entri dari ribuan struktur tiga dimensi protein.
Molekul obat didesain untuk mengikat pada protein target dalam rangka mendapatkan efek terapetik, namun jika molekul obat kecil yang berfungsi sebagai ‘kunci’ bertaut pada target protein lain yang memiliki situs pengikatan serupa, atau ‘lubang kunci’, maka efek samping bisa terjadi.
Dalam rangka mengidentifikasi protein yang bisa menjadi target tak diinginkan, peneliti USCD menggunakan molekul obat tunggal dan melihat bagaimana kemungkinan ia dapat mengikat pada semua protein yang disandikan oleh proteosom manusia. Dalam studi kasus yang sudah dipublikasikan, mereka menggunakan Select Estrogen Receptor Modulators (SERMs), kelas obat yang dimana tamoxifen termasuk didalamnya, untuk mengilustrasikan pendekatan baru tersebut.
‘Prosedur komputasi yang kami kembangkan dimulai dengan model tiga dimensi obat, dalam rangka menunjukkan struktur dari molekul obat yang terikat pada protein target, dalam hal ini SERM yang terikat pada reseptor estrogen,’ kata Bourne, yang adalah wakil direktur PDB. Kemudian, peneliti menggunakan analisis komputer untuk mencari situs pengikatan lain yang cocok dengan situs pengikatan obat. Seperti mencari lubang kunci lain, yang dapat dibuka oleh kunci yang sama.
Pada kajian ini, tim menemukan protein target SERMs yang belum teridentifikasi sebelumnya . Identifikasi pada situs pengikatan ini menjelaskan mengapa terjadi efek samping yang buruk, dan membuka peluang untuk memodifikasi obat supaya tetap mengikat pada target yang diinginkan, namun mengurangi afinitasnya pada situs sekunder.
“Jika obat memiliki efek sampingan buruk, kemungkinan besar obat tersebut mengikat pada molekul sekunder yang tidak diinginkan, dengan kata lain, kunci yang digunakan untuk bertaut dengan sasaran ternyata cocok untuk banyak lubang kunci,’ kata Bourne. Ia menjelaskan, bahwa dengan menggunakan teknik komputer ini untuk menemukan ‘lubang kunci’ lain akan menghasilkan salah satu dari tiga hal ini: Lubang kunci baru bisa jadi tidak menghasilkan efek apapun, lubang kunci tersebut dapat menjelaskan efek samping buruk dari obat, atau riset tersebut dapat saja menemukan efek terapetik baru, yang potensial untuk pengembangan obat yang ada.
Peneliti UCSD melanjutkan kajian mereka, yang menurut Bourne dapat diaplikasikan pada semua obat yang ada di pasaran, dimana struktur obat tersebut terikat pada reseptor PDB. Bourne menggaris bawahi, bahwa hasil dari pendekatan ini tetap harus diuji di laboratorium basah.
Jiang Wang dari program Bioinformatika UCSD juga berkontribusi pada studi ini melalui Plos. Penelitian ini didukung oleh National Institute of Health. Diadaptasi dari bahan yang diberikan oleh UCSD.

Diterjemahkan dari:
University of California - San Diego (2007, December 13). New Computational
Technique Can Predict Drug Side Effects. ScienceDaily. Retrieved April 28, 2009
Ditulis oleh: Arli Aditya Parikesit pada 13-05-2009
Read more...
 
Dibalik Lezatnya Es Krim Print E-mail
Thursday, 07 May 2009

Kata Kunci: emulsifier, es krim, gliserol monostearat, kristal es, lesitin, polisakarida, protein, stabiliser, susu

ImageEs-krim Seperti juga coklat, maka es krim adalah makanan favorit tua muda. Lihat saja di mal atau supermarket, tua muda rela antri untuk membeli es krim. Apa istimewanya es krim sehingga disuka banyak orang? Tentu saja karena rasanya yang enak dan teksturnya yang sangat lembut tidak seperti es pada umumnya.
Ingin tahu mengapa es krim beda dengan es batu biasa???
Es krim adalah buih setengah beku yang mengandung lemak teremulsi dan udara. Sel-sel udara yang ada berperanan untuk memberikan texture lembut pada es krim tersebut. Tanpa adanya udara, emulsi beku tersebut akan menjadi terlalu dingin dan terlalu berlemak.
Bahan utama dari es krim adalah lemak (susu), gula, padatan non-lemak dari susu (termasuk laktosa) dan air. Sebagai tambahan, pada produk komersil diberi emulsifier, stabiliser, pewarna, dan perasa. Sebagai emulsifier biasanya digunakan lesitin, gliserol monostearat atau yang lainnya. Emulsifier ini berguna untuk membangun distribusi struktur lemak dan udara yang menentukan dalam membentuk sifat rasa/tekstur halus dan pelelehan yang baik. Untuk stabilisernya bisa digunakan polisakarida dan ini berfungsi sebagai penambah viskositas. Sedangkan pewarna dan perasa bisanya bervariasi tergantung pada selera pasar. Jika ingin diberi rasa strawberry tentunya diberi perasa strawberry dan pewarna merah. Ingat, pewarna yang diberikan tentunya harus pewarna makanan bukan pewarna tekstil lho.

 

Bahan-bahan tersebut dicampur, dipasteurisasikan, dihomogenasikan, dan didinginkan dengan cepat. Setelah emulsi minyak dalam air tersebut dibiarkan dalam waktu yang lama, kemudian dilewatkan dalam kamar yang suhunya cukup rendah untuk membekukan sebagian campuran. Pada saat yang sama udara dimasukkan dengan cara dikocok. Tujuan dari pembekuan dan aerasi ini adalah pembentukan buih yang stabil melalui destabilisasi parsial dari emulsi. Pengocokan tanpa pendinginan tidak akan memberikan buih yang stabil. Jika buih terlalu sedikit produknya akan tampak basah, keras dan sangat dingin. Sedang jika buihnya terlalu banyak maka produknya akan tampak kering. Sel-sel udara pada es krim harus berukuran sekitar 100 mikron. Jika sel udaranya terlalu besar, es krimnya akan meleleh dengan cepat. Sedang jika sel udaranya terlalu kecil maka buihnya akan terlalu stabil dan akan meninggalkan suatu ‘head’ ketika meleleh.
Es krim mempunyai struktur koloid yang kompleks karena merupakan buih dan juga emulsi. Buih padat terjadi karena adanya lemak teremulsi dan juga karena adanya kerangka dari kristal-kristal es yang kecil dan terdispersi didalam larutan makromolekular berair yang telah diberi gula. Peranan emulsifier (misalnya: gliserol monostearat komersial) adalah untuk membantu stabilisasi terkontrol dari emulsi didalam freezer. Perubahan-perubahan polimorfis lemak pada es krim selama penyimpanan menyebabkan perubahan bentuk pada globula awalnya, yang berkombinasi dengan film protein yang agak lepas, menyebabkan terjadinya penggumpalan di dalam freezer. Stabilisasi gelembung-gelembung udara pada es krim juga terjadi karena adanya kristal-kristal es dan fasa cair yang sangat kental. Stabiliser polisakarida (misalnya: carrageenan) menaikkan kekentalan fasa cair, seperti juga gula pada padatan non-lemak dari susu. Stabiliser-stabiliser ini juga dikatakan dapat memperlambatan pertumbuhan kristal-kristal es selama penyimpanan. Hal ini karena jika kristal-kristal esnya terlalu besar maka akan terasa keras di mulut.
Nah ternyata es krim itu seru kan, gak cuma berisi air saja. Hayooo…. Siapa yang jadi ingin makan es krim???

Ditulis oleh Dwi Hudiyanti pada 01-05-2009
Read more...
 
<< Start < Prev 1 2 3 Next > End >>

Results 19 - 27 of 27